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Abstract ’.

A two-sample test is studied which rejects the null hypothesis of equal 7

b
population medians when two Wilcoxon distribution free confidence intervals v
are disjoint. A confidence interval for the difference in population medians o
is constructed by subtracting the endpoints of two one-sample confidence .‘
intervals. Two different ways to select the one-sample intervals are :::

presented. A solution that specifies equal confidence coefficients for the

one-sample intervals is recommended. All solutions are shown to have the same o
“

L)
asymptotic (Pitman) efficiency as the Mann-Whitney two-sample test. "3
o

_

Key Words and Phrases: Mann-Whitney-Wilcoxon test; nonparametric test, sign g ':;
test, nonparametric confidence intervals, notched box plots. 0 :.
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1. Introduction

The purpose of this paper is to discuss a two-sample test and confidence
interval based on the comparison of one-sample confidence intervals. This
approach is appealing because, along with the two-sample inference, a
statistical description of the individual samples is provided and a graphical
representation of the two intervals provides an effective presentation of the
inference. (See Figure 1). The test rejects the null hypothesis of equal
population medians if the one-sample intervals are disjoint. The confidence

interval for the difference in population medians is constructed by

subtracting the endpoints of one interval from the opposite endpoints of the

other.

McGill, Tukey and Larsen (1978) discuss a similar idea when presenting
notched box plots as a way of displaying relevant information about a
population. The notch in their box is a confidence interval of the form
Mt1.7SE for the population median, where M is the sample median and SE is a
sample estimate of the asymptotic standard error of the sample median when
sampling from a normal population. The factor 1.7 was empirically chosen to
produce a two-sample test with a two-sided level of roughly 5% for several
distributions. It is difficult to interpret the individual intervals
(notches) and "level"” of the test since they are based on such rough
approximations. McKean and Schrader (1983), in a simulation study, found the
confidence coefficient for this procedure to be highly unstable for small to
moderate sample sizes, even at the normal distribution. Hettmansperger
(1984) suggested notching the box plots with sign-intervals. These
intervals have order statistics from the sample as endpoints and are obtained

by inverting the acceptance region of a two-sided sign test. These intervals
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are distribution free, and have a well-defined asymptotic distribution theory i::

Y.

that does not require normality or symmetry assumptions. He also showed that

d this procedure has the same asymptotic efficiency as Mood's (1950) median .";
1 ‘e,
; test which corresponds to a particular choice of sign-intervals. Tableman :‘;
3 o
»

(1984) developed the small sample distribution theory for the comparison of

-

sign-intervals so that one can easily obtain the exact level and confidence

coefficient of the inferepoe.

N PV W
.

For the case of symmetric populations, we propose notching the box plots
with one-sample Wilcoxon-intervals which are defined in Section 2. It is 0
shown that these intervals are distribution free, and exact confidence
coefficients can be obtained from a table of the Wilcoxon (1945) signed-rank -
distribution. Several large sample results concerning its endpoints are
presented. In Section 3, the two-sample inference is developed and ;:-__
discussed. It is shown that the suggested procedures produce two-sample \

tests that have the same Pitman efficiency as the Mann-Whitney-Wilcoxon

(1945, 1947) two-sample test, when sampling from symmetric distributions.

Hence, the proposed procedure can be much more efficient than the procedure -

: based on sign-intervals. Two choices of confidence coefficients for the ..o :‘:
E intervals are discussed and an example is presented. In the final section, :
. we discuss the effects of asymmetry on the two-sample inference. Although in t
simulation studies we have not found the size of the test to be effected, a :.::

reduction in power (Pitman efficiency) of the proposed test can result. E.'

Hence, with strong asymmetry, it may no longer be a competitor to the :
Mann-Whitney-Wilcoxon test. However, in many models it may not be .

unreasonable to assume symmetry or approximate symmetry, especially after a S

~

transformation has been applied.




2. The Wilcoxon-Interval
Assumptions 2.1:
(i) Suppose X1s+.05X) is a random sample of size m with cumulative
distribution function (cdf) F(x-6), where € is the unique median,
F is continuous, and has density f, symmetric about 0, and which
satisfies [fZ(x)dx<e.
Let Gg(t) denote the cdf of (X +X5)/2. Let Ep denote the pth

quantile of F(x-6), 0<p<l. Suppose G4 is twice differentiable in

a neighborhood of ep’ with G'e=g9 positive and G; bounded in the

neighborhood. .

Remark 2.1. If f is symmetric, absolutely continuous, and has finite

Fisher’s information f (£ (x)/£(x))2£(x)dx < =, then the Assumptions 2.1

concerning F and Gy are satisfied. For a proof, see Aubuchon (1982, p.19).
The Wilcoxon confidence interval for 6, the true population median, is

derived by inverting the acceptance region of a size a=2P9(Tm(9)<d(m)) =

2P0(Tm( 0)<d{m)) Wilcoxon signed rank test where

m
T,(8) = Z R(lXi-OI)-I{Xi>9} = ZZ1 ((Xi+Xj)/2 > 8}
i=1 1€i<j<m

with I{A} denoting the indicator function of the event A and R(IXi—OI)
representing the rank of IXi-9| among the ordered IXJ-—OI , J=1,...,m. The
m(m+1)/2 averages (Xi+XJ-)/2, 1€i€j<m, are referred to as the Walsh averages.

let M = m(m+1)/2 and let




5
LR BN ) ~I
represent the ordered Walsh averages. In view of the second equality in ;:
’
(2.1),
o
b ‘.
f d(m) < Tm(O) € m(m+l1)/2 - d(m) if and only if X
Since we assume F is continuous, we take the Wilcoxon-interval for @ to be .
the closed interval i’
' [Z(a(m))’ Zm-a(my+1)1- (2.4) 1
g *
- \
: N
The d(m)-value will be called a depth since it specifies how deep into the
Y ordered Walsh averages the endpoints lie. It is clear that this interval has
exact confidence coefficient y=l-a and is distribution free (since the :
Wilcoxon signed rank test statistic is). ::,
:f Define,
i
. Gp(x) = Z I I {((X;4X;)/25x}/(3) (2.5) .

1€i<j<m

and note that

am(x)

2Tm(9)/m(ln+l)

(2.6)

Gp(x) + 0(m™ 1),




Now a slight adaptation of Lemma 4.2 of Geertsema (1970) yields the following

lemma:
Lemma 2.1. Under Assumptions 2.1 (with ep=9), if {km} is any sequence of

integers satisfying 2k /m(m+1) = 1/2 + 0(n”/Zlogm) as m + =, then wpl

Zge ) = © + [2ey/mimel) - Gy(0)1/G(0) + O(m™>410gm)

where &m is defined in (2.6) and Z) ) is defined in (2.2).

We have at once the following almost sure representation of the endpoints of
the Wilcoxon-interval. The constant km is suggested by the normel

approximation used with the Wilcoxon statistic.

Theorem 2.1. Under Assumptions 2.1, wpl

Ziam) = 0 - Ko/ ((120) 12582 (x)dx) - [G, (0)-1/21/ (2 £2 (x)dx) 4o (m™1/2)

(2.8)

2y a(my+1) = 0+ K/ (0120012062 (x)d)-1Gy (8)-1/2)/ (20 £2 (x)ex) so (712

vhere d(m) = m(m+1)/4 + .5 - k_(m(m+1)(2m+1)/24) /2,

AR
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Proof: We prove the theorem for the lower endpoint Z(d(m))' A similar
argument holds for the upper endpoint.

It is easily shown that d(m)/(m(m+1)/2) = 1/2-k,/(3m)/Z+o(m™1/2)

1/2

+ o(m™}210gm). Now, Gg(6) = 2ff%(x)dx, and observe that 0(m~3/410gm)

o(m"l/z). The theorem follows immediately from the preceding lemma.

Remark 2.2. Under Assumption 2.1(ii), Geertsema’s result and hence Theorem

2.1 can be easily extended to include any quantile ‘p’ 0<p«1.

Let L = Z(d(m)) and U = Z(M-d(m)+1)’ the, lower and upper endpoints of
the Wilcoxon-interval (2.4). As a corollary to Theorem 2.1, we have the

following:

Corollary.

As mrico,

D
(1) m12(L-0) » Z ~ n(-k /122582 (x)ax, 1/12(S£2(x)dx)?)

where n(p,az) denotes the normal cdf with parameters u and

2.

(i1) m2w-L) » k/(31/20£2(x)ax) wpl. (2.9)

(iii) P{(e<L) -~ 0(-ka) = «, where $(+) is the standard normal cdf.

Proof: To prove part (i), we use the fact that Gm(-) (2.5) is a U-statistic.
D
By a theorem due to Hoeffding (Serfling; 1980, p.192), ml/%(G (e)-1/2)

~ D
7(0,1/3). Slutsky’s Theorem along with (2.6) implies m!/2(G (6)-1/2) »

7
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7(0,1/3). Now, (i) follows at once from (2.8) and Slutsky’s theorem. Part
(ii) is immediate from (2.8). In part (iii), write P(6<L) as P(0<ml/2(L-0))
and apply part (i).

Hence, if the Wilcoxon-interval (2.4) is defined by depths
d(m) = m(m+1)/4+.5-ka(m(m+1)(2m+1)/24)1/2, (2.10)

the approximate confidence coefficient is v = 1-2¢(-k,) = 1-2a.

.............................................................
.....................................
I .
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3. The Two-Sample Inference

Let Xl,...,Xm and Yl""’Yn represent independent random samples from

F(x-ex) and F(y—ey) respectively where
(i) o, and Oy are the unique medians of the X and Y populations
(ii) F satisfies the Assumption 2.1
(iii) Gex(tx) = P((X1+X2)/2$tx) and Gey(ty) = P((Y1+Y2)/2.<.ty) satisfy

the Assumption 2.1.

Further, with M = fn(m+1)/2 and N = n(n+l1)/2, let
Lo Und = [Z(a(m)) 2 (M- (m)+1) )
and (3.1)
[Ly:Uy) = [Z(4(n)) 2 (N-d(n)+1)]

represent Wilcoxon-intervals (2.4) constructed on the X and Y samples,

respectively, where

(i) the depths d(m) and d(n) are defined as in Theorem 2.1, however,

with kx and ky replacing the k,, and

(ii) 7y, = 1-2P(T (0)<d(m)) and Ty = 1-2P(T,,(0)<d(n)) denote the

respective confidence coefficients.

To test

...........................
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Ho A = ey-ex = 0 vs. HA A#0

we reject Ho if the two Wilcoxon-intervals are disjoint. That is,
if Ux < Ly or Uy < Lx. (3.2)

We wish to pick the two Wilcoxon-intervals so that if the intervals are
disjoint we reject Ho: 4=0 in favor of HA: A*0 with a specified significance
level «,.

Recall from the Corollary to Theorem 2.1, part (iii), that the
approximate confidence coefficients are 7x;1-2¢(—kx) and 7y51—2¢(-ky).
respectively. The following theorem relates L the comparison rate, to kx

and ky which determine Tx and Yy It therefore indicates how to pick Ty and

7y so that we achieve @, (or 7C=1-ac) at least in an approximate sense.

Theorem 3.1. Suppose that m,n?~ so that m/(m+n)?A, 0<A<1. Then under H:

8=0, with the decision to reject given by (3.2),

ay = P(ULy) + P(ULy) > 28(-(1-0) M2 Al ), (3.3)
where $é(-) is the standard normal cdf.
The proof is the same as that of corollary to Theorem 2.1 of Hettmansperger

(1984).

Define kc by ac:2¢(~kc). Then from (3.3) kx and ky must satisfy the

condition

|4 e I
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PO BV P

rrv
PR

R LT

RN

£ PRV ATRR AR

v -
»

3R JuPLR PR

Corfalale

-

LN
DR N

S

R



o gt

-11-

k, = (1-x)1/2kx+x1/215,. (3.4)

Clearly, there are infinite number of choices for lg‘ and lS" hence for Ty and

¥4 We will discuss two of these choices later.

yC
The test can be based on a confidence interval for A=9y-9x. An

equivalent decision is: Reject H: 4=0 in favor of Hy: A&*0 if
0 is not contained in [Ly—Ux, Uy—Lx]. (3.5)
Hence, if x, is the significance level of the test, then the interval in

(3.5) has confidence coefficient 7c=1-ac. We therefore take the two-sample

confidence interval for Azey-ex to be

(LyUesUyLyd = [2(d(n))~Z(M-d(m)+1) *Z(N-d(n)+1) Z(d(m)) 1- (3.6)

This interval has approximate confidence coefficient 7c=1-20(-kc) where k, is

defined in (3.4).

Remark 3.1. The present procedure is based on the ordered dependent Walsh

averages {(Xi+XJ-)/2; 1€if€j<m} and {(Yi+Yj)/2; 1€i<jsn}. Hence, we are unable

to formulate the procedure in terms of statistics whose distributions are

tractable. We must rely on the normal approximation to the size «.. For a

Cc

second-order approximation based on Edgeworth expansions see Tableman (1984).

The following theorem which is similar to Theorem 2.3 of Hettmansperger

(1984), gives the asymptotic length of the two-sample confidence interval

V.s&s»w

T A ERAD

v e "V 1’7‘"'

" vy
Pl I

S

l'l.‘ T
7 e

.

A




LY
-
-

-12-

(3.6) which is a measure of its efficiency and hence of the test from which
it is derived. The asymptotic length does not depend on lSc or ls, but rather
on kc as defined in (3.4).

Theorem 3.2. Suppose m,n* g0 that m/(m+n)?A, 0<A<1. Let A(TW)
denote the length of the two-sample confidence interval given in (3.6).

Then, wpl
(min) /2A(m0) > k /(3 (1-2)) Y252 (x)ax. (3.7)

We note that not only do all the intervals (obtained through the
defining relationship (3.4)) have the same asymptotic length, but
N1/2A(TW)/(2k_) converges to 1/((12x(1-3))1/21#2(x)dx wpl. This limit is the
reciprocal of the Pitman efficacy of the Mann-Whitney-Wilcoxon two-sample
test; see Hettmansperger (1984, p.163). Hence, the tests based on the
Wilcoxon-intervals have the same efficiency properties as the
Mann-Whitney-Wilcoxon test.

As mentioned previously, there are an infinite number of ways to choose
the intervals so that the two sample test has asymptotic size «. For the
case of sign-intervals Hettmansperger (1984) considered restricting the two
intervals to having the same confidence coefficient or having the same
asymptotic length. The same solution applies to the Wilcoxon-intervals. In
particular, we recommend the equal confidence coefficients solution because,
as indicated in Table 1 of Hettmansperger (1984), the common value of the
confidence coefficients does not change much as the ratio of sample sizes

varies between 1 and 3. Other solutions are not as stable.

- -
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| :
:_ Hence, we recommend using two 84X Wilcoxon-intervals for a 5% two-sided, :.
‘ two-sample test or two 75% Wilcoxon-intervals for a 10% two sided, two-sample
. test. The later case provides for a 5% one-sided, two-sample test.
: 3
Example. We illustrate the ideas on a small data set. Suppose we wish to -
compare the growth of mushrooms with and without vitamin Bl in their diets.
:: The data given in Table 1 has been altered for illustration purposes from that e
A given by Lehmann (1975, p.47). The measurement is weight gain in milligrams 5
at the end of an observation period.
¥ -
3 - Table 1 about here - %
’ :
E Let A:ey—ex, the difference between the treatment (Bl) and control (NO Bl) «‘
, population medians. We assume the weight gain populations are symmetric. To -
- test Hj: 4=0 vs H,: 470, we could use the Mann-Whitney-Wilcoxon rank sum ':‘
- test. Using the MANN command in Minitab (see Ryan, Joiner and Ryan (1985)), :
: we find the sum of the ranks (breaking ties by averaging) of the treatment "
group is 141.5 with a two sided p-value of .0065. Hence we reject H,: 4=0 at ::::
3 «<,01, E\
A more informative analysis is based on the comparison of two 84% -t
Wilcoxon confidence intervals fbr 0, and 6,. Figure 1 provides the notched N
i box plots for the two groups. Comparing the 85%-Wilcoxon notches leads to
.'. rejection of Ho: 4=0 at the 5X level since they are disjoint. '.'
. v
- Figure 1 about here - E;

O O P N A
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Further, we have the intervals and estimates for ey and 9x as [Ly,Uy] =

[23.0,28.51], 5y=25.5 and [Lx’Ux] = [15.0,20.5], 3x=18.0, respectively. The
estimates éx and éy are the Hodges-Lehmann (1963) estimates computed as the
median of the Walsh averages. In addition, a 95X confidence interval for A
is given by [L,~U,,Uj-L,] = [2.5,13.5]) with A = 0-6, = 7.5. The figure
along with the intervals and estimates are available using the BOXPLOT and
WINT commands in Minitab.

Note that the Hodges-Lehmann estimate and 95% confidence interval for A
derived from the Mann-Whitney statistic are Z = 8.0 ard [3.0,13.0],
respectively. These differ slightly from the Wilcoxon-interval comparison.

Eighty five percent sign-notches are not available for the given sample
size. The closest confidence coefficient to 85 percent is 89 percent and
yields [22.0,29.0] and [14.0,23.0] for Bl and NO Bl groups, respectively.
These intervals overlap and would fail to reject H,: 4=0 at some level less
than .05. If the distributions are not too heavy tailed then the Wilcoxon
notches and the Mann-Whitney-Wilcoxon test are more efficient than the
sign-notches and this may result in a failure of the sign-notches to detect a

significant difference when the other methods will detect it.
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4. The Effects of Asymmetry on the Two-~Sample Inference :-
»
As remarked in Section 2, Geertsema’s result can be extended to include -
]
any quantile Ep, 0<p<1l. We state here, without proof, the form most useful A
f
for our discussion. We note that the result does not rely on the symmetry
N
of F.
b/ o
' :.~
[ Theorem 4.1. Under Assumptions 2.1 (i), (ii) (but with symmetry on F ‘C'_’
i dropped), if {k,} is any sequence of integers satisfying 2k, /m(m+1) = B
3 Ge(ep)+k/m1/2+o(m-l/2) as m~, then wpl "
¥ N /25" (¢ ) - (& ' -1/2 3
: Z(km) = $p+k/m Ge(fp) [Gm(fp)-Ge(fp)]/Ge(fp) + o(m ).
N
- Let 6* denote the median of Gg(). Note that under asymmetry, 03%9. N
With the depth d(m) defined as in Theorem 2.1, we have 2d(m)/m(m+1) = i
1/2-k/(3m)/240(n™1/2) ag mwe. But now, 1/2=G4(6%). Hence, Theorem 4.1 ' 5
L-‘
¥ gives us the following almost sure representation of the endpoints of the '_:'_
N one—-sample Wilcoxon-interval. They differ from those given in Theorem 2.1. ~
¥ - ot 1/25' (%) -iG (8%)- (0¥ -1/2 %
: L = 6"-k/(3m) "/ “Gg(0") {G,(67)-1/21/Gg(6" ) +o(m ) ::
N
; and (4.1) 2
U = o*+k/(3m) /265(0*) -1G,(6%)-1/21/G4(6% ) +o(m™1/2). X
N Before proceeding to the two sample inference, we make the following -

LA

remarks: v
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Remarks 4.1.

(i) When F is not symmetric, of differs from 6 by a constant a; that

; is, 6%(6)=e+a. This follows from the fact that 6% is such that
N
! £ _ " x
y Gg(0")=f F(20"-20-x)f(x)=1/2.
g Now, differentiate with respect to 6 to obtain d(o*(e)/de=1.
2 Hence, Gg(6*) = 2f f£(2a-x)f(x)dx.
(ii) It follows from Theorem A in Serfling (1980, p.192) and from (2.6)
/2.5 ‘% D > 2
_ that m [Gm(9*)-1/2]/03(9 ) * Z-n(0;(v-1/4)/(S f(2a-x)f(x)dx)“]
as m=, where v = f [F(Za-x)]zf(x)dx.
: We now return to the two-sample inference. Let 9; and 9; denote the
j.- medians of Gg, () and Gey(')’ respectively. Under the same shape assumption
., on the underlying distributions, 9;=9x+a and 9;=9y+a. It is clear that
N . . A e s . . . af _o% —a¥_ok
N testing Ho. 9y-9x is equivalent to testing Ho. ey -Ox, and that A-ey ex. We
“
- are now in a position to approximate L the comparison rate of the test
. (3.2), and to determine the asymptotic length of the two-sample interval
y (3.6) for A when F is asymmetric. These results are stated in the next
; theorem and they follow immediately from (4.1) and Remarks 4.1.
Theorem 4.2. Suppose that m,n?» so that m/(m+n)>X, 0<X<1.
(i) Then under Ho: 4=0, with the decision to reject given by (3.2)
- 0
X 3
» o
. >*
|
Z i
« '\\::
/ -
A o e e e I e T e (e, L T et T e, YU
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oy * 2(-k /(12(v-1/4))1/2),

Let A(TW) denote the length of the two-sample confidence interval

given in (3.6). Then, wpl,

(m+n) /27 (TW) » kc/[(sx(l-x))1/2j“f(2a-x)f(x)dx].

Remarks 4.2.

(1)

(ii)

Suppose kc is the critical value that provides a size-ac
two-sided test when F(:) is symmetric. Although v=1/3 when F(-)
is symmetric, for asymmetric distributions we have 1/4<v<1/2. We
see from part (i) of Theorem 4.2 this can result, theoretically,
in increasing the size. However, Tableman (1984) simulated the
two-sample test (3.2) for samples of small to moderate sizes from
chi-square distributions with 4, 18, 30 degrees of freedom and
from the standard normal distribution. No evidence was found that

asymmetry (in this case, right skewness) effects the size.

Part (ii) of Theorem 4.2 reveals that the main effect of asymmetry

is the possibly significant reduction in power. This follows from

the fact that for certain asymmetric densities f f(2a-x)f(x)dx can

be quite small. We also note that the Pitman efficiency is no

longer that of the Mann-Whitney two-sample test. In this setting,

the efficacy of that test remains (12(1-A)A)l/zf fz(x)dx, and hence

may be much more efficient since S f(2a-x)f(x)dxsf £2(x)dx.

T, f.‘f_
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Figure 1. Wilcoxon Notched Boxplots for Mushroom Data.
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